Wednesday 14th July 2021

(3 years, 4 months ago)

Westminster Hall
Read Full debate Read Hansard Text Read Debate Ministerial Extracts

Westminster Hall is an alternative Chamber for MPs to hold debates, named after the adjoining Westminster Hall.

Each debate is chaired by an MP from the Panel of Chairs, rather than the Speaker or Deputy Speaker. A Government Minister will give the final speech, and no votes may be called on the debate topic.

This information is provided by Parallel Parliament and does not comprise part of the offical record

Chris Skidmore Portrait Chris Skidmore (Kingswood) (Con) [V]
- Hansard - -

I beg to move,

That this House has considered space debris.

It is an honour to serve under your chairmanship, Mr Dowd. If the covid pandemic has taught us anything, it is that we can no longer take the unexpected for granted. The lesson that we must learn is that we need to look elsewhere for other seemingly unfathomable scenarios, recognising that they sadly may come true one day. Already the pandemic has hastened our awareness of other looming catastrophes. Heat domes over Canada and the western United States, combined with rapid glacial Arctic ice melting, have demonstrated the need for urgent action on reducing carbon dioxide emissions, but where else might the next catastrophe occur?

One answer, I believe, is staring straight above us in the skies. After being reshuffled out of Government, I found myself promoted to spending much more time with my three-month-old daughter. Obviously, my working patterns were slightly different, and I would often find myself at three o’clock in the morning comforting a baby in our downstairs living room, and staring up at the skies under our conservatory roof. Without sounding too middle-aged, I do not remember ever being able to spot so many shining pinpricks of light, each one a satellite making its swift but steady path across the Earth’s orbit, when I was a child.

It turns out that my early morning thoughts were not just the product of sleep-deprived delirium. We are living in a boom age of satellite production. According to the United Nations Office for Outer Space Affairs, UNOOSA, as of April 2021 there were 7,389 satellites in space—a 20% increase from April 2020. That is welcome news in terms of telecommunications, but who pays—not for the satellites themselves but for the risk that the proliferation of such projectiles poses for the sustainability and, indeed, future viability of the Earth’s orbit?

I believe that this is a threat that we must wake up to before we find ourselves in a catastrophe that has the potential to cause equal, if not worse, economic devastation than the pandemic. By way of a history lesson, the question of who is responsible for what we send up into space has long been debated. The Magna Carta of space law, the outer space treaty, was signed at the 1,499th plenary meeting of the United Nations General Assembly on 19 December 1966. For the most part, it is the primary piece of international legislation that guides how nations operate in space. Within that landmark text, article VI states:

“Parties to the Treaty shall bear international responsibility for national activities in outer space, including the Moon and other celestial bodies, whether such activities are carried on by governmental agencies or by non-governmental entities, and for assuring that national activities are carried out in conformity with the provisions set forth in the present Treaty.”

Therefore, national Governments are now, as then, held responsible for the activities of companies, public or private, that operate in space, yet this has not prevented an accumulation of dangerous space debris, which is littered across our orbit and for which no one seems to have been held accountable.

Currently, there are an estimated 34,000 objects greater than 10 cm in diameter in orbit, 900,000 objects of between 1 cm to 10 cm in diameter in orbit, and a further 128 million objects of between 1 mm to 1 cm in diameter in orbit, and all are capable of seriously damaging or destroying vital satellite equipment. As the British astronaut Tim Peake observed, it takes only an object the size of a paint fleck to crack the windows on the international space station. Those numbers are beside the number of defunct and non-operational satellites—currently 2,900—that have sadly led to collisions, such as the Iridium-33 collision with the derelict Kosmos-2251, which caused a significant dispersal of debris. We also have the case of the Ecuadorean NEE-01 Pegasus satellite, which collided with a discarded Soviet fuel tank in 2013, seriously damaging that nation’s only satellite. Those are just two of an estimated 560 satellite break-ups, explosions, collisions or anomalous events resulting in fragmentation.

The risk of a collision in space is still low, but conjunction warnings and collision avoidance manoeuvres are becoming commonplace for satellite operators and the international space station. Most recently, in March this year, the EU’s Galileo satellite GSAT0219 was forced to perform a collision avoidance manoeuvre in response to the predicted impact of tracked space debris, which turned out to be an old Soviet rocket that had been in orbit since 1989. The international space station has been forced to conduct 27 collision avoidance manoeuvres since August 2020, with manoeuvres becoming ever more common. Apparently, it is not the harshness of space, the distance from their families or even illness that is cited by astronauts on the ISS as their greatest fear; it is getting hit by a piece of untracked debris flying past them at 40,000 km per hour.

The threat of space debris is also apparent in the increased militarisation of space and the testing of anti-satellite weaponry, most recently by the Russians and Chinese. When we talk of military satellites, we automatically think of cold war-era spy satellites, but anti-satellite weaponry has now advanced from the realm of star wars under Reagan to become a very real and dangerous issue. In 2007, China’s intentional destruction of the Fengyum-1C decommissioned weather satellite through the use of a ballistic missile was a success, because the satellite operated at the same height as many American and Japanese satellites. It was destroyed, but it caused a massive dispersal of debris, which is still a problem today. That single explosion has accounted for 10% of all catalogued debris. Should anti-satellite battle strategies continue to be developed, we will fail to prevent Kessler syndrome, whereby an exponential splintering of satellite debris leads to further collisions, from developing.

That concern is not simply confined to missiles, as Russian satellite operators have engaged in anti-satellite proximity operations, positioning satellites in harmful trajectory of critical western satellites. In 2014, a Russian satellite named the Luch was purposefully moved into proximity to both Italian and French military communications satellites. Additionally, in July 2020, the Russian military satellite Kosmos-2543 released a high-speed projectile from its main body, causing the American Space Force to declare that the activity was

“consistent with a test of a new anti-satellite capability.”

Although the projectile failed to collide with another satellite, the capability to shoot down satellites from satellites has now been proved feasible. The test occurred after an April 2020 test of the Russian Nudol system, which is designed to engage satellite targets in low Earth orbit. More recently, from July 2017 to December 2019, the Chinese satellite SJ-17 made a series of manoeuvres with other Chinese satellites that took them past the UK Ministry of Defence’s Skynet 5A satellite.

The issue is important because it puts everything, from our military satellites to our global navigation satellite system services and environmental Earth observation satellites, in danger. Manoeuvring satellites around others is exactly the kind of misguided bravado that could cause a cascade of debris to form and then cut off our use of satellites—and future satellites—for our low and medium Earth orbits. Unfortunately, there is painfully little international agreement that prevents nations from recklessly using their satellites or even equipping their satellites with weapons that are not weapons of mass destruction or nuclear weapons.

The Russian Government’s choice to fire a projectile from Kosmos 2543 proves that the interpretation of article IV of the outer space treaty, which prevents nations from putting WMD or nuclear weapons into space, applies only to WMDs or nuclear weapons. We have a gap in the treaty.

As so often in international affairs, we have a problem that is growing in a less than adequate direction from current international treaties, and a global response that can only be described as lacking. Yet that has begun to change, as the recent G7 leaders’ summit in Cornwall proved with a joint statement on space debris, giving some much-needed leadership in an area that is vital for the continuation of human development, both in space and on Earth. In the joint statement, G7 leaders pledged to promote a

“safe and sustainable use of space to support humanity’s ambitions”.

The statement went on to

“recognise the growing hazard of space debris”,

highlighting the fragile nature of our planet’s upper atmosphere and promoting the desire for nations to co-operate in the safeguarding of space. Additionally, the G7 agreed on the importance of continued international collaboration and the promotion of both public and commercial efforts to clean up our low and medium Earth orbits.

Increased awareness, investment and specific regulation will be vital for a path forward to prevent the increase in space debris, removing what is currently a problem, and preventing irresponsible satellite activities in future. The joint declaration from the G7 was a strong step forward towards building strong space regulation and fostering the continued international partnerships between nations and private enterprises. However, more must be done to hold all space-capable countries and companies accountable for the shared good of our Earth orbit.

This problem will continue to be more apparent as the number of satellites, space missions and even commercial flights to the edge of space increase. I am sure we were all at the edge of our seats on 11 July last week when Sir Richard Branson came home after successfully visiting the edge of space during Virgin Galactic’s first commercial flight. I congratulate Virgin Galactic on that achievement. Although that milestone should be celebrated, Virgin Galactic’s mission success highlights the increased interest and ultimately the increased accessibility of space.

Additionally, missions to provide satellite broadband to the world, including the 3 billion people who do not have broadband access at the moment, by companies such as SpaceX, OneWeb and the many state-owned Chinese aeronautical companies, will require the deployment of thousands, if not tens of thousands, more satellites. Those mega constellation projects have already begun, as there was a 28% increase in satellites from 2020-21.

SpaceX’s Starlink constellation has already launched 1,730 satellites as of May 2021, with a total of 42,000 planned over the next few decades. Truly, we are living in a second space age of which we can all be proud, and thankful for the development of this remarkable technology, but the dramatic and continued increase in the number of satellites being launched means that we need to have an awareness of the increase in the amount of space debris and the real danger that it will pose to our modern world.

Many of the satellites that we rely on provide services for GNSS, also known as GPS. That is classified as an invisible utility, and for good reason, because without GNSS nearly every branch of critical national infrastructure would be in obvious jeopardy. Communications, emergency and hospital services, finance and transport all rely on GNSS to operate smoothly, and all rely on satellite services.

To put the importance of GNSS into perspective, a 2017 report by London Economics calculated that the economic impact on the UK of a five-day disruption to the network would put thousands of jobs at risk and cost around £5.2 billion—a major disruption to every aspect of modern life not even being counted in that figure. A disruption of that magnitude is not out of the question, and we need to face the reality. With more satellites comes more debris, and more opportunities for a serious accident to occur, as space travel becomes commercialised and access to space becomes ever more possible.

Should we continue largely to ignore the issue of space debris, we risk developing a situation where the upper atmosphere becomes completely unusable—that Kessler syndrome that I mentioned of an hypothesised scenario, where due to the amount of junk in space, pieces begin to collide with each other on a far more regular basis, causing a cascade of debris, effectively cutting off use of our lower orbit.

This growing number of satellites are becoming dependent on support technologies to avoid not only the increasing debris we are inevitably creating but other satellites. According to Holger Krag of the European Space Agency, today 15% to 20% of all satellite-avoidance actions involve manoeuvres away from other active satellites. That means that there is an increasingly established process of satellite operators contacting each other and co-ordinating actions to avoid collisions.

All that takes time and resource, contingent on fuel levels, satellite response times and successful co-ordination from operators. Because there is no universal system, such as an air traffic control for satellites, we are wasting fuel, decreasing response times and lowering the lifespan of satellites. International standards and agreed regulations will be incredibly important, moving forwards into this new space age. Thankfully, the UK, even though it is not a tier one space power, much as I would like it to be higher up that agenda, has been leading the way on space debris, by using our brilliant diplomats to push for an updated international legislative framework, aimed at modernising space law, and creating consistent legal frameworks that will help create sustainable space development.

The UK was among the first international partners to join the US-led Operation Olympic Defender, an effort to build closer co-operation with allied nations in securing and protecting space. The UK has also worked with the UNOOSA to encourage the development of space debris removal technologies. In addition, space domain awareness is a critical enabling capability, if the UK is successfully to manage the threat posed by space debris, including its removal.

The UK military recognise the need to understand this rapidly evolving and dynamic landscape in order to protect, defend and regulate the UK’s space interests, and to mitigate the threats posed to the UK’s assets and critical national infrastructure, and to play its part in assuring safe and responsible behaviour in space.

In January this year, a new space domain awareness software capability, known as Aurora, went live for operations and was successfully deployed into the Defence Digital’s MOD Cloud ICE. The software was designed, developed and deployed by CGI in partnership with the Royal Air Force and the UK Space Agency, as part of work to enhance the current UK Space Operations Centre.

Space is inherently dual use in nature, with congestion and debris an issue for both military and commercial satellite operators alike. The UK has a long-standing heritage in space domain awareness, and arguably has one of the best space domain awareness sensors in Europe in the form of RAF Fylingdales. Current and planned defence radars can contribute to space domain awareness through the inherent sensitivity, range resolution and discrimination capabilities. They benefit defence and wider Government objectives, and should be progressed at pace. RAF Fylingdales is also renowned for its whole-force approach to space operations, working with industry partners to develop this capability. British company Serco has been working with the RAF and now Space Command to deliver the RAF Fylingdales orbital analysis servers and sensor support for over 55 years. Serco is now exporting this heritage and skillset to support US Space Command with deep space surveillance.

Commercial space operators also have a large part to play, and a vested interest, in creating a sustainable space environment. Last week, in a speech at Space-Comm expo in Farnborough, which I attended, Rajeev Suri, chief executive officer of Inmarsat, set out a vision for

“an unrelenting commitment to sustainability in space”.

Mr Suri also highlighted the need to pay close attention to the potential risk of collision and the growing challenge of atmospheric pollution posed by deorbiting satellites, particularly during the recent rapid expansion phase of mega constellations, which I have spoken about.

The UK already has fast-growing capability in debris removal technology. The UK team at Astroscale are leading the mission operations for the world’s first commercial debris removal mission, ELSA-d, which is currently in low Earth orbit, preparing for the capture of a dummy defunct satellite, using a magnetic-capture docking-plate mechanism, in the next few months. This mission will be a milestone moment for the deployment of debris removal services, including Astroscale’s next phase partnership with OneWeb, via the European Space Agency Sunrise programme, to develop the technology to remove multiple pieces of space junk in a single mission and to demonstrate the commercial viability of a future service, ELSA-M.

At the same time, the UK is witnessing a surge in start-up space companies that are placing sustainability and environmental concerns at the heart of their missions. For example, Black Arrow, which plans to become the first net-zero launch company, is investigating the innovative use of new, environmentally friendly propulsion fuels and recoverable and reusable rocket launchers, to demonstrate to the space industry that we can chart a new net-zero course for space.

We need not invest in clean-up missions and sustainable space technologies simply out of altruism. It is important to recognise the potential growth that the space sector can provide for UK plc. Figures released in May by the UK Space Agency showed that sector income rose by 5.7%—from £14.8 billion to £16.4 billion—between 2016-17 and 2018-19. I would wager that it has risen higher still over the past two years. Over the same timeframe, employment in the sector increased by 3,200, to 45,100 people, and supportive R&D technology investments relating to space activities increased by 18%, to £702 million.

In short, the space industry in the UK is in a good position to not only do the responsible thing and help solve a growing problem, but to be successful while doing so. The UK needs to build itself a space-centric education pipeline to properly capitalise on the growing environment of the successful UK space industry. Investing in R&D technologies such as robotics, autonomous systems, quantum computing and satellite technologies will help the UK capture a space industry market share that is bigger than it already is. Currently, the in-orbit servicing sector is estimated to be worth $4.4 billion, and, should we act fast and invest in the best bets when it comes to space debris removal, we should be capable of capturing at least $1 billion of this market by 2030.

Central funding will be a key solution to this technological problem, and the UK Space Agency, via the UK Government, has been leading the way in helping develop new and innovative technologies for cleaning up space. In 2020, the UK Space Agency allocated £1 million to companies to assist tracking space debris. In addition to awarding £2.5 million to Astroscale UK in May 2021, only a few weeks ago the Government invited space firms to apply for a share of up to £800,000 in funding for the purpose of cleaning up space. For this initiative, the UK Space Agency is seeking to fund additional debris removal feasibility studies and develop debris removal mission concepts and system designs. Due in part to this renewed funding, the number of jobs in the UK space sector has increased, and overall income in that industry continues to rise. Continued funding, paired with internationally recognised regulation, will be the key to ensuring that we can tackle space debris as a nation.

For the UK to take the much-needed serious step in global leadership and position ourselves as a leader in space sustainability and debris removal, we must continue to encourage the development of environmentally sustainable space assets. The ELSA programme from Astroscale is a strong start, but we must continue to invest in our UK space assets and our cutting-edge R&D programmes in this field. By encouraging the commercialisation of space debris removal, we will also be fostering a financially lucrative industry that can be driven by the UK and create future UK jobs. This can be accomplished by increasing the scope and financing of the recent UK Space Agency phase A study, which is aimed at supporting space debris removal proposals. I urge the Minister to look at that study.

We can also take a leadership role globally by ensuring that regulation keeps up with industry development, and specifically by making it mandatory for companies to develop satellite sustainability contingency plans and encouraging partnerships with companies such as Astroscale for satellite end-of-life services with the use of docking plates. Regulation can also aim to ensure that low Earth orbit satellites have the capability to undertake collision avoidance manoeuvres and encourage the development of a space traffic control system. By establishing a “pay now or pay more later” system to encourage companies to prepare satellites for removal or face serious costs later if they are forced into collision avoidance manoeuvres, we will encourage companies to establish sustainability plans. Consistency and transparency in these matters will encourage space industry investment.

We must also remember that as global Britain, we need to leverage our international alliances with global partners such as the United States, Australia, Japan and India to establish agreed regulation and resist aggressive actions from other countries, such as China and Russia. With these partners and more, we can help establish a “net zero space” sustainable development goal to face this growing challenge in our lower and middle Earth orbits over the coming decades.

Two years ago, when I was an Energy Minister at the same time as being space Minister, I signed net zero into law, committing the UK to becoming the first major nation and the first G7 country to state that we would have net zero carbon emissions by 2050. Two years on, 75% of the Earth’s land mass has now committed to a net zero target ahead of COP26 this year, which just goes to demonstrate the leadership role that the UK can play globally. We can demonstrate to the rest of the world what can be achieved, so let us now take this opportunity to show leadership on space debris internationally, and to push for a net zero space environment and lead the world in the sustainable use of space.

--- Later in debate ---
Chris Skidmore Portrait Chris Skidmore [V]
- Hansard - -

Thank you, Mr Dowd, for your chairmanship of the debate. I thank the shadow Minister and the Minister for their contributions. It is clear that we share an equal passion for the importance of the future of space sustainability and what role space debris removal can play in that sustainability.

This is the first debate that has ever been held in Parliament on space debris, despite it being an issue that has been known about in the space community for more than 55 years, since the signing of the outer space treaty. The UK has a unique opportunity to show international leadership in this area, backed by future investment. I hope that space debris is part of the UK space strategy that the Minister outlined—it has every right to be so.

I have been contacted by a wide number of industry and academic experts. I am delighted that the Minister has met Astroscale, but I hope she might attend a roundtable of experts on space debris that I might organise in the future, with people from industry and academia, including Imperial College, the Open University and Leicester University. It is amazing how many people have been working on this subject.

We have the opportunity, just as we do with net zero, to set out a vision of net zero space. Let us be the country that does that, in the same way that we are the country that has led the charge on net zero. Net zero is so important now for setting out the future vision of our green economy. Setting out a future for our space economy can be built around a sustainable space environment, in which the UK can lead the way.

The Minister is doing a great job and I would urge her to think about how this issue can fit into her wider vision on space, and to attend the roundtable that I might organise as a result of this debate. I thank everyone for attending and speaking in this first debate on space debris and setting out why it is such an important and critical issue to resolve for our future, to avoid any future scenario where we are unprepared. The unexpected can be anticipated if we expect it, and I hope this debate has woken us up to the risks that space debris could case if it is not tackled for the future. I hope it places a marker in the ground—a sustainable marker, which can be removed, of course—that demonstrates that we can act, we need to act and we need to act fast in order to prevent collisions in the future.

Question put and agreed to.

Resolved,

That this House has considered space debris.