Gene Editing Debate

Full Debate: Read Full Debate

Baroness Bakewell

Main Page: Baroness Bakewell (Labour - Life peer)
Thursday 30th January 2020

(4 years, 9 months ago)

Lords Chamber
Read Full debate Read Hansard Text
Moved by
Baroness Bakewell Portrait Baroness Bakewell
- Hansard - -

That this House takes note of recent developments in the field of gene editing, and its status in scientific research around the world.

Baroness Bakewell Portrait Baroness Bakewell (Lab)
- Hansard - -

My Lords, I open this debate in a spirit of inquiry and concern rather than as an expert with well-established views. I do so because I am a journalist, not a scientist. The field of gene editing is developing so widely across the planet and so deeply in the range of applications that it is time to back the calls of many scientific institutions to extend the debate beyond the medical and scientific fields, where, until recently, any degree of concern has been concentrated. It is time for everyone to know what is going on.

Before I get to the meat of the matter, here for a start is an issue raised by two charities, Genetic Alliance UK and the Progress Educational Trust, once they knew about this debate. In the interests of clarity, they have asked for the phrase “genome editing” to be used consistently in this debate, rather than simply “gene editing”. They warn against too often using the term “CRISPR”, a process of genome editing pioneered since 2012, as if it were the synonym for gene editing in general when there are several other techniques. Having explained that to your Lordships, for the purposes of this debate, and because it was used in its title, I shall refer to gene editing.

Last December, a Chinese scientist was convicted of practising a medical procedure without a licence to do so. He was sentenced to three years in prison and fined 3 million yuan. He is He Jiankui, a name now familiar throughout the world of gene editing. He had researched and produced, through the use of CRISPR, the genomes of what have since become two little girls. What is more, he declared that he had done so at an international genome editing conference in 2018. The world of biogenetics was appalled and flew into an explosion of panic and outrage. The welfare of the little girls is not a matter of public record—not yet.

Last November, I was invited by the Royal Society to chair a debate called “The Quest for the Perfect Human”. Its four panellists were people steeped in the science and application of gene editing and each was familiar with CRISPR. One, Dr Rodger Novak, was co-founder in 2013 of CRISPR Therapeutics. Another was Professor Robin Lovell-Badge of the Crick Institute, where many of its 110 labs are allowing scientists to analyse gene function and disease processes. Professor Lovell-Badge is also a member of the World Health Organization Expert Advisory Committee on Developing Global Standards for Governance and Oversight of Human Genome Editing. More of that later.

Intervention in a person’s genes for the sake of medical benefits is a technique that was always on the cards once the human genome project was declared complete in 2003. However, science is a constantly flowing river and, before then, interventions such as IV fertilisation had resulted in the first IVF baby, Louise Brown, being born as long ago as 1978. From the late 1980s, scientists in the UK were developing pre-implementation genetic diagnosis—PGD—a process whereby parents with a serious inherited disease in their family can avoid passing it on to their children. This technique is approved in the UK by the Human Fertilisation and Embryology Authority.

Time moves on, and in June 2013 the UK Government agreed to develop legislation that would legalise three-person IVF as a treatment to eliminate mitochondrial diseases that pass from mother to child—it is called MRT—and the 2015 mitochondrial donation regulations, allowed under the Human Fertilisation and Embryology Act 1990, made this possible with parliamentary consent.

I mention this background to indicate how genetic procedures are becoming more and more common in modern medicine and to place gene editing and its direction in that context. As one of the panellists said at the Royal Society debate, a line drawn in the sand gets washed away by the tide of change. Perhaps prompted by Mr He Jiankui’s extraordinary announcement, in 2018 the UK Nuffield Council on Bioethics published a report which concluded that

“though there may be many individual objections, there exists no categorical ethical objection to planting genome-edited human embryos.”

Given that, as I have outlined, existing UK law already allows limited editing of genomes in human reproduction, the eventual wide acceptability of editing to prevent the transmission of serious diseases and to eliminate them from the germline appears likely in the near future.

That being so, a number of ethical and social issues need to be considered. Before setting them out, let me summarise the present state of law around the world concerning gene editing. No country explicitly allows human germline genome editing, but many have no prohibition on it either. In the UK these matters are, as I have indicated, the concern of the HFEA, which requires all such matters to be done under licence. The August 2017 issue of Nature first reported on the American use of gene editing in humans. In response, George Annas, director of the Center for Health Law, Ethics and Human Rights at Boston University School of Public Health declared that

“the scientists are out of control.”

What makes a big difference to all this is the speed of scientific developments and the availability of editing techniques that are precise, affordable and easy to apply. We know that many are being used successfully under licence in the treatment of rare diseases. Their availability around the world makes their use, official or unofficial, likely to spread. CRISPR is the most well known. When CRISPR was first announced, the acronym received 19 million hits on Google, 5,000 articles were written, 28,000 patents were taken out and, as we know, two babies were born. The prospects for the future of medicine and the human race are huge: 8 million babies are born each year with genetic defects and most will die quite soon. The potential for doing good is enormous. There is talk, for example, of being able to eliminate sickle cell disease entirely, and families blighted by the possible inheritance of Huntington’s can look to gene editing permanently to delete the aberrant gene from their germline. Work is also being done on type 1 diabetes.

In this country, the Government set up the national genomic healthcare strategy last February to improve existing services for those with rare diseases, with the NHS offering genome sequencing as part of its service. One in 17 people in this country—6% of the population —will be affected by a rare disease at some point in their lives. That is 3.5 million people in the UK and 30 million across Europe. It is because so many new techniques are in use or imminent that it is important to confront the broader ethical and social dilemmas.

Is it ethical to change for ever a human germline to eliminate from human history certain patterns of inheritance? There have been calls for a moratorium, or at least a pause. How can and should the world control this? In the wake of Mr He Jiankui’s announcement, the World Health Organization has set up a committee of experts to look at the governance of the process and to create a framework that will consider the risks, benefits and various models of regulation—hard laws, soft laws and so on. How can any regulation be policed? With the techniques cheap and available, who is to stop rogue operators, or even biohackers, seeking to make such changes? How might a political tyrant one day make it serve his or her interests? The WHO report is expected this spring.

Another major consideration arises: what is to be considered an illness and who decides? Is deafness an illness? Should we be seeking to wipe it out? Is autism an illness? Many of those who belong to such communities would not think so. The offspring who result from gene editing have no say in the matter, and the consent of the patient is one of major principles of medical practice. Who has the authority to rule on such a matter, and what form would any such ruling take? Would it be a total ban or would there be conditional permissions? Who is to write the framework, and should it be universal or local?

Another matter is social justice. To whom will this new facility be made available? Will it be acceptable for rich countries to forge ahead, leaving behind poorer countries that cannot afford such developments? Will rich individuals be able to benefit while the poor cannot? Who will have the right to refuse such treatment and to whom? The project risks widening, in an ever new and devastating way, the differences between rich and poor, and dividing the human race into subsections worthy of some futuristic science fiction. Indeed, such fictions have already been written—Huxley’s Brave New World, Kazuo Ishiguro’s Never Let Me Go and plenty of others. The imagination of our novelists is running ahead of the science.

The debate that I chaired at the Royal Society was called “The Quest for the Perfect Human”. In the course of that evening, the word “eugenics” came up—the science of perfecting the human race. It was used merely as a touchstone of the worst that could be imagined, but it is why I initiated this debate.

I have spoken of what I know and what I have heard. The first is very little; the second I may have oversimplified—I stand to be corrected by experts. However, as these techniques become more widespread, what has emerged—from the considerations of the World Health Organization to those involved in this work at the Francis Crick Institute and in university research institutions across the world—is the belief that the public must be brought on board. I hope that the Government are taking to heart the concerns that exist about this exciting but fundamental change in how science is about to shape, irreversibly, the human race. I beg to move.

--- Later in debate ---
Baroness Bakewell Portrait Baroness Bakewell
- Hansard - -

My Lords, when I proposed this debate, I knew that it would be a good one because, as the noble Baroness, Lady Bottomley, said, people in this House know stuff. It has been great to hear so many different points of view.

Speaking personally, it is rare to find myself in agreement with two bishops—an agreement that I wholly endorse. I have learned a great deal not only from the medical people here but about sport—perhaps, for me, the most surprising entry to this field of knowledge. I very much enjoyed and found interesting what turned out to be a spat about EU regulations between two of the speakers, but I suppose that we are all getting a little twitchy as we get towards the end of tomorrow.

It has also become clear that the dilemmas are proliferating—the moral dilemmas about children born with genetic diseases, the sport issues, which have not surfaced in my knowledge, and the Government’s ambitious plans for the genome sequencing of children. I think that there is a big issue around that that will be problematic.

Finally, I thank the Minister for his answers. He did not propose a strategy for making these issues more possible and more widely acknowledged by the public at large. I hope that that will happen some time soon. In the meantime, I thank him and all noble Lords for taking part.

Motion agreed.