Jeremy Chittenden

Centre for Inertial Fusion Studies

Imperial College

Theory, simulation and experiments in Inertial Confinement Fusion and fundamental Plasma Science

Fusion Energy APPG, June 27th 2023

Fusion seeks to replace our reliance on fossil fuels with the energy source inside our Sun The main fuel can be extracted from seawater (an almost limitless supply) Each fusion reaction produces a million times the energy of a chemical reaction (with no CO_2 emissions) No chain reaction or 'meltdown' and no long-lived radioactive waste

Fission and Fusion are different forms of Nuclear Reactions

GFS

Conventional nuclear reactors use fission reactions to split heavy atoms

A chain reaction as each fission event produces neutrons which initiate further reactions

Fission and Fusion are different forms of Nuclear Reactions

Helium Helium Deuterium Tritium neutron

GFS

Conventional nuclear reactors use fission reactions to split heavy atoms

A chain reaction as each fission event produces neutrons which initiate further reactions Fusion reactions instead combine light atoms

No chain reaction involved but to initiate reactions we must first heat the fuel to around 100 million degrees

Several Different Approaches to Fusion Energy Are Being Explored

Steady state Timescales - minutes or hours Plasma size - 10m Many other approaches including hybrid schemes lie between Magnetic and Inertial Fusion Energy

Inertial Fusion Energy National Ignition Facility

Pulsed Timescales - billionth of a second Plasma size - a tenth of a mm (thickness of human hair)

A lot of the underpinning technologies supporting reactor designs are common however there some are key differences such as 'energy gain' and 'standoff'

Inertial Fusion recreates conditions at the centre of the Sun

Granule

Sunspot

Penumbra Umbra __

The enormous pressure required are generated by using intense lasers or X-rays to drive a spherical implosion

Inertial Fusion recreates conditions at the centre of the Sun

CIFS

The enormous pressure required are generated by using intense lasers or X-rays to drive a spherical implosion

Fusion fuel is encased in a sphere of high density carbon (synthetic diamond) the size of a pepper corn

implosion

Demonstration of Ignition, Burn and 'Breakeven'

Breakthrough in nuclear fusion energy announced

CBS MORNINGS >

U.S. announces nuclear fusion energy breakthrough: "One of the most impressive scientific feats of the 21st century"

Demonstration of Ignition, Burn and 'Breakeven'

Imperial College London Much needs to be done to turn Inertial Fusion into an energy source

It should be stressed that demonstration of energy gain on NIF was a science experiment and was not intended as an efficient means of generating energy

The experiment however proved that 'ignition' works, this is the key process through which large energies can be generated by Inertial Fusion

To achieve a source of competitively priced energy we need a way to generate still more energy, by producing the same **extraordinary** conditions, repetitively in a much **simpler** and above all **cheaper** system

A broad range of approaches to Inertial Fusion Energy are now being explored, including laser direct drive, projectile driven inertial fusion and magnetic-inertial fusion schemes, through national and international programs, private venture funding and public-private partnerships

Imperial College The UK is well positioned to exploit its expertise in Inertial Fusion

PHYSICAL REVIEW LETTERS 129, 075001 (2022)

Editors' Suggestion Featured in Physics

Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment

H. Abu-Shawareb et al.* (Indirect Drive ICF Collaboration)

¹General Atomics, San Diego, California 92186, USA ²Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808, USA ³Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA ⁴Polymath Research Inc., 827 Bonde Court, Pleasanton, California, USA 94566 ⁵Los Alamos National Laboratory, Mail Stop F663, Los Alamos, New Mexico 87545, USA ⁶Nevada National Security Site, 232 Energy Way, North Las Vegas, Nevada 89030, USA ⁷Sandia National Laboratories, P.O. Box 5800 Albuquerque, New Mexico 87123, USA ⁸Imperial College London, Plasma Physics, South Kensington Campus, London, SW7 2AZ, United Kingdom ⁹Luxel Corporation, P.O. Box 1879, 60 Saltspring Drive, Friday Harbor, Washington 8250, USA ¹⁰Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA ¹¹University of California at Berkeley, Department of Nuclear Engineering, 4165 Etcheverry Hall, Berkeley, California 94720-1730, USA ¹²Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA ¹³Gryphon Technologies, 303 Lindbergh Avenue, Livermore, California 94551, USA ¹⁴Princeton Plasma Physics Laboratory, 100 Stellarator Road, Princeton, New Jersey 08540, USA ¹⁵CEA/DAM/DIF, 91297 Arpajon cedex, France ¹⁶National Nuclear Security Administration, Office of Defense Programs, United States Department of Energy, Washington, D.C. 20585, USA 17 SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA 18 University of New Mexico, Department of Nuclear Engineering, MSC01 1120, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, USA ¹⁹University of Michigan, Climate & Space Research Building, 2455 Hayward Street, Ann Arbor, Michigan 48109-2143, USA ²⁰Kentech Instruments Ltd., Isis Building, Howbery Park, Wallingford, Oxfordshire OX10 8BD, United Kingdom ²¹Atomic Weapons Establishment, Aldermaston RG7 4PR, United Kingdom ²²Department of Physics, Clarendon Lab, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom ²³Spectral Sciences Inc., 4 Fourth Avenue, Burlington, Massachusetts 01803-3304, USA ²⁴Fraunhofer Institute for Laser Technology ILT, 52066 Aachen, Germany ²⁵RWTH Aachen University, 52066 Aachen, Germany ²⁶Optical Sciences Centre, Department of Physics and Astronomy, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia ²⁷United States Naval Research Laboratory, Plasma Physics Division, 4555 Overlook Avenue SW, Washington, D.C. 20375, USA ²⁸Washington State University, Office of Research, P.O. Box 641060, Pullman, Washington 99164-1060, USA ²⁹Laboratoire pour l'utilisation des Lasers Intenses chez École Polytechnique, F-91128 Palaiseau cedex, France ³⁰University of Nevada at Reno, Department of Physics, MS 0220, 1664. Virginia Street, Reno, Nevada 89557, USA ³¹Université of Paris-Saclay, CEA, LMCE, 91680 Bruyères-le-Châtel, France

While Inertial Fusion is a predominantly US program at the moment the UK and France are acknowledged as major contributors to the achievement of ignition.

Imperial College The UK is well positioned to exploit its expertise in Inertial Fusion

PHYSICAL REVIEW LETTERS 129, 075001 (2022)

Editors' Suggestion Featured in Physics

Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment

H. Abu-Shawareb et al.* (Indirect Drive ICF Collaboration)

¹General Atomics, San Diego, California 92186, USA ²Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808, USA ³Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA ⁴Polymath Research Inc., 827 Bonde Court, Pleasanton, California, USA 94566 ⁵Los Alamos National Laboratory, Mail Stop F663, Los Alamos, New Mexico 87545, USA ⁶Nevada National Security Site, 232 Energy Way, North Las Vegas, Nevada 89030, USA ⁷Sandia National Laboratories, P.O. Box 5800 Albuquerque, New Mexico 87123, USA ⁸Imperial College London, Plasma Physics, South Kensington Campus, London, SW7 2AZ, United Kingdom ⁹Luxel Corporation, P.O. Box 1879, 60 Saltspring Drive, Friday Harbor, Washington 8250, USA ¹⁰Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA ¹¹University of California at Berkeley, Department of Nuclear Engineering, 4165 Etcheverry Hall, Berkeley, California 94720-1730, USA ¹²Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA 13 Gryphon Technologies, 303 Lindbergh Avenue, Livermore, California 94551, USA ¹⁴Princeton Plasma Physics Laboratory, 100 Stellarator Road, Princeton, New Jersey 08540, USA 15 CEA/DAM/DIF, 91297 Arpajon cedex, France ¹⁶National Nuclear Security Administration, Office of Defense Programs, United States Department of Energy, Washington, D.C. 20585, USA 17 SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA 18 University of New Mexico, Department of Nuclear Engineering, MSC01 1120, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, USA ¹⁹University of Michigan, Climate & Space Research Building, 2455 Hayward Street, Ann Arbor, Michigan 48109-2143, USA ²⁰Kentech Instruments Ltd., Isis Building, Howbery Park, Wallingford, Oxfordshire OX10 8BD, United Kingdom ²¹Atomic Weapons Establishment, Aldermaston RG7 4PR, United Kingdom ²²Department of Physics, Clarendon Lab, University of Oxford, Parks Road, Oxford OXI 3PU, United Kingdom ²³Spectral Sciences Inc., 4 Fourth Avenue, Burlington, Massachusetts 01803-3304, USA ²⁴Fraunhofer Institute for Laser Technology ILT, 52066 Aachen, Germany ²⁵RWTH Aachen University, 52066 Aachen, Germany ²⁶Optical Sciences Centre, Department of Physics and Astronomy, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia ²⁷United States Naval Research Laboratory, Plasma Physics Division, 4555 Overlook Avenue SW, Washington, D.C. 20375, USA ²⁸Washington State University, Office of Research, P.O. Box 641060, Pullman, Washington 99164-1060, USA ²⁹Laboratoire pour l'utilisation des Lasers Intenses chez École Polytechnique, F-91128 Palaiseau cedex, France ³⁰University of Nevada at Reno, Department of Physics, MS 0220, 1664. Virginia Street, Reno, Nevada 89557, USA ³¹Université of Paris-Saclay, CEA, LMCE, 91680 Bruyères-le-Châtel, France

While Inertial Fusion is a predominantly US program at the moment the UK and France are acknowledged as major contributors to the achievement of ignition.

UK universities are World leading in the science supporting and have trained a significant fraction of US Inertial Fusion scientists

Our strong interactions with the US program provide the UK with collaborative access to multi-billion dollar experimental facilities at US national laboratories

The UK has World leading capabilities in Theory and Simulation, Plasma Diagnostic Techniques and High Power Laser technology

Jeremy Chittenden

Centre for Inertial Fusion Studies

Imperial College

Theory, simulation and experiments in Inertial Confinement Fusion and fundamental Plasma Science

Fusion Energy APPG, June 27th 2023

Back up slides

Several Different Approaches to Fusion Energy Are Being Explored

The UK has considerable expertise in Magnetic, Inertial and Magneto-Inertial Fusion

CIFS

The UK Inertial Fusion Consortium draws members from all UK groups with research interests in Inertial Fusion. From this, a small group, the Roadmap Committee, was tasked with drafting a 15year Roadmap. The Roadmap Committee was: R.H.H. Scott (Chair), T.D. Arber, A.R. Bell, J. Chittenden, W.J. Garbett, PA Norreys, J. Pasley and N. Woolsey. We also acknowledge the extensive contributions of S. Rose and G. Gregori to the Roadmap. The Roadmap was subsequently revised based on input from the wider UK Inertial Fusion Consortium. The views expressed within this document are personal opinions and do not necessarily represent those of their institutions.

https://www.inertialfusion.co.uk/roadmap

Drive Inertial Fusion

roadmap Capsule Cap

https://www.fusionindustryassociation.org/members

Inertial Fusion is a Rapidly Growing part of the Fusion Industry Sector